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ABSTRACT

Today’s sensor networks provide a wide variety of application domain for high-speed pattern classification systems. 
Such high-speed systems can be achieved by the use of optical implementation of specialized POF correlator. In this 
research we discuss the modeling and simulation of the phase only filter (POF) in the task of pattern classification of 
multi-dimensional data.
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1 INTRODUCTION

A system composed of multiple sensors for data acquisition requires the analysis of multiple data signals in order to 
classify the input data. One such system is the electronic Nose system (eNose). An electronic nose (e-nose) is an 
instrument that combines gas sensor arrays and pattern analysis techniques, for the detection, identification or 
quantification of volatile compounds1. The multivariate response of an array of chemical gas sensors with broad and 
partially overlapping selectivity can be utilized as an “electronic fingerprint” to characterize a wide range of odors or 
volatile compound by utilizing pattern-recognition. In this paper, data from such a system is analyzed and classified 
using the POF. This data is, in fact, 1D data from multiple data sources, thus multi-dimensional data. In 1961 Bellman2

introduced the concept of the “curse of dimensionality” which refers to the exponential growth of hypervolume as a 
function of dimensionality. Therefore, in order to analyze and classify multidimensional data using conventional 
methods such as Linear Discriminant Analysis (LDA), Principal Component Analysis (PCA), or the K Nearest 
Neighbors (KNN) requires huge feature vectors or dimension reduction. In all cases the test sample is compared to the 
trained database one by one requiring much computational power. 

However, application wise, the eNose is just one such possible application area. In this day and age, urban biological 
defense is a reality. Environmental monitoring, medical monitoring, and public health surveillance are a few of the key 
components to be considered in such a situation.  Environmental detectors that can be used in urban environments for 
early detection of biological aerosols is one application requiring a high speed correlation technique.  Current systems 
are not up to date and will cause great casualties. They rely on biological point collectors or point detectors. Similarly, 
applications in bomb identification for airport security might use multiple sensors sensitive to different chemicals, or 
other quantifiable signal generating material. 

2 ENOSE DATA

In the following example, the eNose data is collected using four Figaro gas sensors. Each sensor is sensitive to different 
gases, such as air contaminants and solvent vapors. When using an array of four sensors, a wide variety of odors can be 
analyzed and classified. For example, odors of 3 different coffee types can easily be classified using a relatively small 
database. The following, figure 1, shows one such experiment. In this experiment, a database of 15 samples, 5 samples 
from each of the 3 different classes of coffee were trained and used to identify a test sample using PCA, LDA, and KNN 
classifier. 

In the PCA method our objective is to perform dimensionality reduction while preserving as much af the randomness in 
the high dimensional space as possible. There are basically two approaches to dimensionality reduction. Those are the 
feature extraction and the feature selection methods. In the problem of feature extraction, given a feature space:



Figure 1. Three classes of patterns and one test pattern
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we want to find a mapping:
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such that the transformed feature vector:

M
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preserves most of the information or structure in RN. An optimal mapping is one that will result in no increase in the 
minimum probability of error. In general an optimal mapping will be a non linear function. However, there is no 
systematic way to generate non linear transforms. Therefore, feature extraction is commonly limited to linear transforms 
such as:
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If we let x be represented as a linear combination of orthonormal basis vectors:
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We can represent x with only M (M < N) of the basis vectors by replacing the components [yM+1,….,yN}T with some 
preselected constants bi.
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The representation error is then:
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We can measure this representation error by the mean-squared magnitude of ∆x. Our goal is to find the basis vectors φi

and the constants bj such that the mean squared error is minimized. We can express the mean-squared error as:
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To minimize the mean-squared error λi will have to be the smallest eigenvalues of the covariance matrix. Therefore, we 
choose the eigenvectors φi corresponding to the largest eigenvalues λi.of the covariance matrix Σx .

The objective of the LDA is to perform dimensionality reduction while preserving as much of the class 
discriminatory information as possible. We seek to obtain a scalar y by projecting the samples x onto a line.

xWy T= (9)

In order to find a good projection vector, we need to define a measure of separation between the projections. Fisher's
linear discriminant is a classification method that projects high-dimensional data onto a line and performs classification 
in this one-dimensional space. The projection maximizes the distance between the means of the two classes while 
minimizing the variance within each class. Equation 10 defines the Fisher criterion, which is maximized over all linear 
projections, w:
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Where the within-class scatter is:
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Therefore, we will be looking for a projection where examples from the same class are projected very close to each 
other, and at the same time, the projected means are as far apart as possible. 

The KNN classifier is trivial. In the method we simply grow the area surrounding the estimation point x until it 
encloses a total of k data points. Therefore, the density estimate becomes:
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here, Rk(x) is the distance between the estimation point x and its kth closest neighbor, and A is simply the area of the unit 
circle. Classification results follow in figures 2a-2c. These figures show that the eNose data is being classified into three 
classes.



Figure 2a. Principal components classifier Figure 2b. Linear discrimination classifier

Figure 2c. KNN classifier

All three of the classifiers are able to classify this data correctly. The sample “X” belongs to class 2. The three classifiers, 
however, work very differently. The PCA is based on signal representation and measures the “closeness” by the mean 
square error over all points in the distribution. The LDA, on the other hand, maximizes the separation between the means 
of the projection, while minimizing the variance within each projected class. Now, this fact tells us that the LDA will fail 
when the discriminatory information is in the variance of the data and not in the mean. The KNN classifier is a very 
intuitive classifier measuring the “closeness” of the test sample to its k-nearest neighbors.

3 APPLICATION OF PHASE ONLY FILTER ON ENOSE DATA

Previously the performance of the POF was investigated and compared to the KNN classifier by Gudmundsson3 et.al.
The database consists of fifteen samples. Four sensors represent each sample, and two features represent each sensor. 
Thus the database consists of 120 items. A cross-correlation between the sample and the database was performed to 
generate the output at the output plane. Each sample can be represented by the following set:

{ }),(4),(3),(2),,(1 stdmeanSensorstdmeanSensorstdmeanSensorstdmeanSensor

sample =
(13)

and the database by the set of samples:

{ }15,...,1 samplesampledatabase = (14)

Therefore, the correlation database simply becomes:



{ }databasesampletestcorrDB ⊗= _ (15)

The absolute difference between the test sample and each element in the database provides circular boundary or distance 
measure between the sample and the database. This fact was used for comparison purposes of the POF and KNN 
classifier. In the case of the KNN the difference is the direct difference, or distance between the test samples, mean and 
std, and the mean and std of each element in the database. The distance is simply the computed Euclidean distance, 
sqrt(mean^2+std^2). In the case of the POF, the auto-correlation of the test sample’s mean and std was computed and 
subtracted from the database of cross-correlations between the sample’s mean and std, and the mean and std of each 
sample in the database. Obviously, a lot of information is lost when the feature space is reduced to two dimensions only. 
However, the exercise was performed for the sake of comparison between the POF classifier and more conventional 
classifiers. 

If formulated correctly, the POF classifier lends itself much better to a large feature space since the correlation between 
samples is performed in parallel. 

4 THE ONE DIMENSIONAL POF CLASSIFIER

The mathematical foundation of the one dimensional POF filter can easily be derived from simplifying the previously 
defined two dimensional POF. If we let the Fourier transform of the signal function f(x) be denoted by:

)exp()()( xxx UjUFUF Φ= (16)

Then a Complex Match Filter (CMF) corresponding to this function f(x) at the filter plane is expected to produce the 
autocorrelation of the input at the output plane. Therefore, the CMF is given by the complex conjugate of the input 
Fourier spectrum:

)exp()()(*)( xxxxCMF UjUFUFUH Φ−== (17)

The inverse Fourier transform of the product of F(Ux) and HCMF(Ux) results in the convolution of f(x) and f(-x), which is 
the equivalent of the autocorrelation of f(x). Moreover, when |F(Ux)| is set to unity, HCMF  becomes a phase only filter:

)exp()( xxPOF UjUH Φ−= (18)

Finally, the phase only correlation of the input signal and the reference sample is simply:

( ) ( ){ }xPOFx UHUFF ×−1 (19)

Since the convolution operator in the space domain is equivalent to the product operator in the frequency domain, one 
can think of the POF as an edge enhancer by way of division by | F(Ux) |, and integrator, by integrating the product of the 
input signal and the reference sample.

5 OPTICAL ARCHITECTURE

For each class a different POF needs to be developed from the database samples. One such approach is to represent the 
collection of data in 2 dimensions, and perform the comparison in parallel using phase-only filter. For each class, a 
different POF needs to be developed. A 4f correlator set up may allow for parallel matching of all the input into different 
classes in parallel. One possible implementation is shown in the following, figure 3. 



Figure 3. 4- f Cylindrical lens correlator

To attain one dimensional correlation in the optical domain, an array of simple cylindrical lenses L1 are used to perform 
the Fourier transform. All of the to-be-classified inputs are placed in the input plane, one focal length from the lens, and 
its Fourier transform forms at the focal distance from the lens in the Fourier plane. The set of classification filters will be 
at this plane. After the light passes through another array of cylindrical lenses, the Fourier transform of the product 
pattern will appear at the output plane. This output is expected to be generated as a result of the parallel matching 
producing different classes at spatially varying locations. 

6 DATA REPRESENTATION AND ALGORITHM

The most straightforward approach to represent the multi dimensional data for the optical correlator is by reducing the 
four dimensional signal to a one dimensional signal by concatenating the output from all four sensors. Therefore, each 
line on the SLM will consist of eighty points and the database will produce fifteen data lines. 

Using cylindrical lenses to process each line from the database simplifies the problem to a manageable size. Each line of 
the database can be represented by the following set: 

},.....,{ 8021 pppLine = (20)

Therefore, the entire database can be represented by the following set:

},.....,{ 1521 linelinelinedb = (21)

Similarly the unknown input sample can be represented by the set:

},...,{ 8021 uuuunknown = (22)

To focus on signal features rather than the energy of the signal, we must establish a reference value. Comparing the 
correlation difference from the auto correlation of the unknown input sample, one can select the best match using the 
following search algorithm:

unknownunknownunknownlineunknownlineunknowndbinlines ⊗≈⊗⊗∃⊗∀ |,)( (23)

This search algorithm truly searches for the best matching signature. 

7 EXPERIMENT

An experiment using the eNose data set was designed and implemented in Matlab™ to simulate the optical correlator. 
The following, figures 4-5, shows the point to point distance between the cross correlation of the data base with the 
unknown input sample and the autocorrelation of the test sample. 

L1 L2

fff

Input plane
Multiple inputs

Fourier plane
Classification filter

Output plane
Fourier transform of

product pattern

f



0 10 20 30 40 50 60 70 80
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7
Unknown sample is classified from class 1

20 points times 4 sensors = 80, 5 of each sample in database

V
ar
ia
tio
n 
fr
om
 a
ut
oc
or
re
la
tio
n

Class 1
Class 2
Class 3

Figure 4. Correlation difference
in case of class 1input sample
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Figure 5. Unknown sample is
 classified as class 1

Clearly, the different classes from the database group together. All the class 1 samples cluster together, the class 2 
samples cluster together, and the class 3 samples all cluster together. The unknown input sample is classified as class 1 
type since the distance from the input sample to the database samples is shortest. The average discrimination ratio 
between the test sample and the classes is:  1.0000 for class 1 to class 1, 3.0939 for the class 1 to class 2, and finally 
4.6411 for the Class 1 to the class 3 type. 

Similarly, figure 6-7 shows the point to point correlation in the case of the unknown sample being of the class 2 kind. 
The results are similar. All the class 2 type samples in the database are clustered at the bottom of the graph, and the 
unknown sample is classified as class 2 type.
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Figure 6. Correlation difference 
in case of class 2 input sample
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Figure 7. Unknown sample is 
classified as class 2

The average discrimination ratio between the test sample and the brands in the database is still very high. Between the 
class 2 and the class 1 the ratio is 5.9072. And between the class 2 and class 3 the discrimination ratio is 3.9475
Finally, figures 8-9 shows the point to point correlations of the case where the unknown sample is of the class 3 type. 
The results are again very similar. The classes are all well defined and the discrimination ratio is high. Similarly, the 
class 3 samples are all clustered at the bottom of the graph and the unknown sample is classified as class 3 type.
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Figure 8. Correlation difference
 in case of class 3 input sample
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Figure 9. Unknown sample 
is classified as class 3

As expected, the average discrimination ratio between the test sample and the classes in the database is still very high. 
Between the class 3 and class 1 type the ratio is 7.6295, while it is 3.7226 between the class 3 and class 2 type. The 
discrimination ratio can be tabularized for comparison with the previous classification exercise using the mean and 
standard deviation. In four out of six cases this new method on raw data space outperforms the KNN classification 
method using mean and std. 

Table 1. Comparison of discrimination ratios

However, within a class, the data may exhibit a certain degree of variability. A training method must be developed in 
order to incorporate the variability into the filter synthesis. The next section describes one possible way to achieve this.

8 CONCLUSIONS

The paper proposes a new problem domain for the POF, namely data from multiple one dimensional sensors. Data from 
an electronic nose device is used for demonstration purposes. We compare the POF classifier performance on multi 
dimensional data to the performance of the k-nearest neighbors (KNN) classifier. To take advantage of the POF a 
suitable multi dimensional data representation for multi dimensional signal is introduced. The one dimensional POF is 
proposed; and an algorithm is developed, and simulated.
The POF applied to raw data shows very promising results and outperforms the classical KNN classifier for all three 
classes.

class 1 class 2 class 3
POF raw data class 1 3.0939 4.6411
POF mean, STD class 1 8.7176 12.0534
KNN mean, STD class 1 3.3630 5.4325
POF raw data class 2 5.9072 3.9475
POF mean, STD class 2 1.1593 1.6197
KNN mean, STD class 2 4.8187 3.6372
POF raw data class 3 7.6295 3.7226
POF mean, STD class 3 4.9150 4.1119
KNN mean, STD class 3 6.3922 3.4211

Summary of discrimination ratios



Future work in this area would include the investigation of performance in larger feature space, and implementation of 
the proposed electro/optical correlator to perform classification on-line.
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